. .
Deutsch
Deutschland
Ähnliche Bücher
Weitere, andere Bücher, die diesem Buch sehr ähnlich sein könnten:
Suchtools
Anmelden

Anmelden mit Facebook:

Registrieren
Passwort vergessen?


Such-Historie
Merkliste
Links zu eurobuch.de

Dieses Buch teilen auf…
..?
Buchtipps
Aktuelles
Tipp von eurobuch.de
Werbung
Bezahlte Anzeige
FILTER
- 0 Ergebnisse
Kleinster Preis: 23.66 EUR, größter Preis: 33.60 EUR, Mittelwert: 28.97 EUR
Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose - Philipp der Born
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Philipp der Born:

Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose - neues Buch

2007, ISBN: 9783638829458

ID: 125811406

Bachelorarbeit aus dem Jahr 2007 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 2,3, Universität Bremen, Sprache: Deutsch, Abstract: Der weltweite Börsenhandel ist ein äusserst komplexer Wirtschaftsbereich, in dem sich Veränderungen weder durch mathematische Berechnungen (Formeln) noch durch sichere Faustregeln vorher bestimmen lassen. Dies gilt sowohl für die Aktienindizes als auch für alle Aktienwerte. Selbst wenn sich bestimmte Korrelationen zwischen einzelnen Kenngrössen (Variablen) unter Berücksichtigung vorausgegangener Börsenjahre erkennen lassen, können augenblickliche politische Ereignisse, Unruhen, Katastrophen usw. sämtliche Vorhersagetendenzen zunichte machen. Im Bereich der Informatik gibt es seit mehreren Jahrzehnten Bestrebungen, mit künstlichen neuronalen Netzen (KNN) komplexe Sachverhalte, wie z.B. den Börsenhandel, Aussagen abzuverlangen, die Entscheidungen bezüglich solcher Sachverhalte erleichtern sollen. Künstliche neuronale Netzwerke und künstliche Neuronen haben ihren Ursprung in der Biologie. In der Informatik, dieser Bereich wird heute auch Neuroinformatik genannt, geht es dabei weniger um das Nachbilden natürlicher neuronaler Netze, sondern um eine Abstraktion von Informationsverarbeitung in einem künstlichen neuronalen Netz. Erst durch schnelle Computer kann der komplexe Lernprozess von künstlichen neuronalen Netzen in, z.B. für den Börsenhandel, akzeptablen Zeiträumen ablaufen. In der vorliegenden Arbeit geht es schwerpunktmässig darum, den Aktienindex DAX vorherzusagen. Für diesen Anwendungsbereich soll die Regressionsanalyse (multiple Regressionsanalyse) dabei helfen, die Ergebnisse der Prognose mit den künstlichen neuronalen Netzen zu optimieren, in dem aus einer Menge von Variablen die relevantesten extrahiert werden. Ein abschliessender Vergleich soll zeigen welches Verfahren besser ist. Verglichen werden die künstlichen neuronalen Netze, die Regressionsanalyse, die künstlichen neuronalen Netze in Kombination mit der Regressionsanalyse und der Durchschnitt aller Verfahren. Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose eBook eBooks>Fachbücher>Informatik, GRIN

Neues Buch Thalia.ch
No. 26357360 Versandkosten:DE (EUR 12.52)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose - Philipp der Born
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)

Philipp der Born:

Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose - neues Buch

2007, ISBN: 9783638829458

ID: 62d73a027ebac0c85b688e42d3750dbc

Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose Bachelorarbeit aus dem Jahr 2007 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 2,3, Universität Bremen, Sprache: Deutsch, Abstract: Der weltweite Börsenhandel ist ein äußerst komplexer Wirtschaftsbereich, in dem sich Veränderungen weder durch mathematische Berechnungen (Formeln) noch durch sichere Faustregeln vorher bestimmen lassen. Dies gilt sowohl für die Aktienindizes als auch für alle Aktienwerte. Selbst wenn sich bestimmte Korrelationen zwischen einzelnen Kenngrößen (Variablen) unter Berücksichtigung vorausgegangener Börsenjahre erkennen lassen, können augenblickliche politische Ereignisse, Unruhen, Katastrophen usw. sämtliche Vorhersagetendenzen zunichte machen. Im Bereich der Informatik gibt es seit mehreren Jahrzehnten Bestrebungen, mit künstlichen neuronalen Netzen (KNN) komplexe Sachverhalte, wie z.B. den Börsenhandel, Aussagen abzuverlangen, die Entscheidungen bezüglich solcher Sachverhalte erleichtern sollen. Künstliche neuronale Netzwerke und künstliche Neuronen haben ihren Ursprung in der Biologie. In der Informatik, dieser Bereich wird heute auch Neuroinformatik genannt, geht es dabei weniger um das Nachbilden natürlicher neuronaler Netze, sondern um eine Abstraktion von Informationsverarbeitung in einem künstlichen neuronalen Netz. Erst durch schnelle Computer kann der komplexe Lernprozess von künstlichen neuronalen Netzen in, z.B. für den Börsenhandel, akzeptablen Zeiträumen ablaufen. In der vorliegenden Arbeit geht es schwerpunktmäßig darum, den Aktienindex DAX vorherzusagen. Für diesen Anwendungsbereich soll die Regressionsanalyse (multiple Regressionsanalyse) dabei helfen, die Ergebnisse der Prognose mit den künstlichen neuronalen Netzen zu optimieren, in dem aus einer Menge von Variablen die relevantesten extrahiert werden. Ein abschließender Vergleich soll zeigen welches Verfahren besser ist. Verglichen werden die künstlichen neuronalen Netze, die Regressionsanalyse, die künstlichen neuronalen Netze in Kombination mit der Regressionsanalyse und der Durchschnitt aller Verfahren. eBooks / Fachbücher / Informatik, GRIN

Neues Buch Buch.de
Nr. 26357360 Versandkosten:Bücher und alle Bestellungen die ein Buch enthalten sind versandkostenfrei, sonstige Bestellungen innerhalb Deutschland EUR 3,-, ab EUR 20,- kostenlos, Bürobedarf EUR 4,50, kostenlos ab EUR 45,-, Sofort per Download lieferbar, DE. (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose - Philipp der Born
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Philipp der Born:
Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose - neues Buch

2007

ISBN: 9783638829458

ID: 125811406

Der weltweite Börsenhandel ist ein äusserst komplexer Wirtschaftsbereich, in dem sich Veränderungen weder durch mathematische Berechnungen (Formeln) noch durch sichere Faustregeln vorher bestimmen lassen. Dies gilt sowohl für die Aktienindizes als auch für alle Aktienwerte. Selbst wenn sich bestimmte Korrelationen zwischen einzelnen Kenngrössen (Variablen) unter Berücksichtigung vorausgegangener Börsenjahre erkennen lassen, können augenblickliche politische Ereignisse, Unruhen, Katastrophen usw. sämtliche Vorhersagetendenzen zunichte machen. Im Bereich der Informatik gibt es seit mehreren Jahrzehnten Bestrebungen, mit künstlichen neuronalen Netzen (KNN) komplexe Sachverhalte, wie z.B. den Börsenhandel, Aussagen abzuverlangen, die Entscheidungen bezüglich solcher Sachverhalte erleichtern sollen. Künstliche neuronale Netzwerke und künstliche Neuronen haben ihren Ursprung in der Biologie. In der Informatik, dieser Bereich wird heute auch Neuroinformatik genannt, geht es dabei weniger um das Nachbilden natürlicher neuronaler Netze, sondern um eine Abstraktion von Informationsverarbeitung in einem künstlichen neuronalen Netz. Erst durch schnelle Computer kann der komplexe Lernprozess von künstlichen neuronalen Netzen in, z.B. für den Börsenhandel, akzeptablen Zeiträumen ablaufen. In der vorliegenden Arbeit geht es schwerpunktmässig darum, den Aktienindex DAX vorherzusagen. Für diesen Anwendungsbereich soll die Regressionsanalyse (multiple Regressionsanalyse) dabei helfen, die Ergebnisse der Prognose mit den künstlichen neuronalen Netzen zu optimieren, in dem aus einer Menge von Variablen die relevantesten extrahiert werden. Ein abschliessender Vergleich soll zeigen welches Verfahren besser ist. Verglichen werden die künstlichen neuronalen Netze, die Regressionsanalyse, die künstlichen neuronalen Netze in Kombination mit der Regressionsanalyse und der Durchschnitt aller Verfahren. Bachelorarbeit aus dem Jahr 2007 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 2,3, Universität Bremen, Sprache: Deutsch eBook eBooks>Fachbücher>Informatik, GRIN

Neues Buch Thalia.ch
No. 26357360 Versandkosten:DE (EUR 12.44)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose - Philipp der Born
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Philipp der Born:
Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose - neues Buch

2007, ISBN: 9783638829458

ID: c74b75ae77d97b08f57fcbcd127cc12f

Bachelorarbeit aus dem Jahr 2007 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 2,3, Universität Bremen, Sprache: Deutsch Der weltweite Börsenhandel ist ein äusserst komplexer Wirtschaftsbereich, in dem sich Veränderungen weder durch mathematische Berechnungen (Formeln) noch durch sichere Faustregeln vorher bestimmen lassen. Dies gilt sowohl für die Aktienindizes als auch für alle Aktienwerte. Selbst wenn sich bestimmte Korrelationen zwischen einzelnen Kenngrössen (Variablen) unter Berücksichtigung vorausgegangener Börsenjahre erkennen lassen, können augenblickliche politische Ereignisse, Unruhen, Katastrophen usw. sämtliche Vorhersagetendenzen zunichte machen. Im Bereich der Informatik gibt es seit mehreren Jahrzehnten Bestrebungen, mit künstlichen neuronalen Netzen (KNN) komplexe Sachverhalte, wie z.B. den Börsenhandel, Aussagen abzuverlangen, die Entscheidungen bezüglich solcher Sachverhalte erleichtern sollen. Künstliche neuronale Netzwerke und künstliche Neuronen haben ihren Ursprung in der Biologie. In der Informatik, dieser Bereich wird heute auch Neuroinformatik genannt, geht es dabei weniger um das Nachbilden natürlicher neuronaler Netze, sondern um eine Abstraktion von Informationsverarbeitung in einem künstlichen neuronalen Netz. Erst durch schnelle Computer kann der komplexe Lernprozess von künstlichen neuronalen Netzen in, z.B. für den Börsenhandel, akzeptablen Zeiträumen ablaufen. In der vorliegenden Arbeit geht es schwerpunktmässig darum, den Aktienindex DAX vorherzusagen. Für diesen Anwendungsbereich soll die Regressionsanalyse (multiple Regressionsanalyse) dabei helfen, die Ergebnisse der Prognose mit den künstlichen neuronalen Netzen zu optimieren, in dem aus einer Menge von Variablen die relevantesten extrahiert werden. Ein abschliessender Vergleich soll zeigen welches Verfahren besser ist. Verglichen werden die künstlichen neuronalen Netze, die Regressionsanalyse, die künstlichen neuronalen Netze in Kombination mit der Regressionsanalyse und der Durchschnitt aller Verfahren. eBooks / Fachbücher / Informatik, GRIN

Neues Buch Buch.ch
Nr. 26357360 Versandkosten:Bei Bestellungen innerhalb der Schweiz berechnen wir Fr. 3.50 Portokosten, Bestellungen ab EUR Fr. 75.00 sind frei. Die voraussichtliche Versanddauer liegt bei 1 bis 2 Werktagen., Sofort per Download lieferbar, zzgl. Versandkosten
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose - Philipp der Born
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Philipp der Born:
Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose - neues Buch

2007, ISBN: 9783638829458

ID: 62d73a027ebac0c85b688e42d3750dbc

Bachelorarbeit aus dem Jahr 2007 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 2,3, Universität Bremen, Sprache: Deutsch Der weltweite Börsenhandel ist ein äußerst komplexer Wirtschaftsbereich, in dem sich Veränderungen weder durch mathematische Berechnungen (Formeln) noch durch sichere Faustregeln vorher bestimmen lassen. Dies gilt sowohl für die Aktienindizes als auch für alle Aktienwerte. Selbst wenn sich bestimmte Korrelationen zwischen einzelnen Kenngrößen (Variablen) unter Berücksichtigung vorausgegangener Börsenjahre erkennen lassen, können augenblickliche politische Ereignisse, Unruhen, Katastrophen usw. sämtliche Vorhersagetendenzen zunichte machen. Im Bereich der Informatik gibt es seit mehreren Jahrzehnten Bestrebungen, mit künstlichen neuronalen Netzen (KNN) komplexe Sachverhalte, wie z.B. den Börsenhandel, Aussagen abzuverlangen, die Entscheidungen bezüglich solcher Sachverhalte erleichtern sollen. Künstliche neuronale Netzwerke und künstliche Neuronen haben ihren Ursprung in der Biologie. In der Informatik, dieser Bereich wird heute auch Neuroinformatik genannt, geht es dabei weniger um das Nachbilden natürlicher neuronaler Netze, sondern um eine Abstraktion von Informationsverarbeitung in einem künstlichen neuronalen Netz. Erst durch schnelle Computer kann der komplexe Lernprozess von künstlichen neuronalen Netzen in, z.B. für den Börsenhandel, akzeptablen Zeiträumen ablaufen. In der vorliegenden Arbeit geht es schwerpunktmäßig darum, den Aktienindex DAX vorherzusagen. Für diesen Anwendungsbereich soll die Regressionsanalyse (multiple Regressionsanalyse) dabei helfen, die Ergebnisse der Prognose mit den künstlichen neuronalen Netzen zu optimieren, in dem aus einer Menge von Variablen die relevantesten extrahiert werden. Ein abschließender Vergleich soll zeigen welches Verfahren besser ist. Verglichen werden die künstlichen neuronalen Netze, die Regressionsanalyse, die künstlichen neuronalen Netze in Kombination mit der Regressionsanalyse und der Durchschnitt aller Verfahren. eBooks / Fachbücher / Informatik, GRIN

Neues Buch Buch.de
Nr. 26357360 Versandkosten:Bücher und alle Bestellungen die ein Buch enthalten sind versandkostenfrei, sonstige Bestellungen innerhalb Deutschland EUR 3,-, ab EUR 20,- kostenlos, Bürobedarf EUR 4,50, kostenlos ab EUR 45,-, Sofort per Download lieferbar, DE. (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.

< zum Suchergebnis...
Details zum Buch
Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose
Autor:

von der Born, Philipp

Titel:

Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose

ISBN-Nummer:

9783638829458

Detailangaben zum Buch - Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose


EAN (ISBN-13): 9783638829458
Erscheinungsjahr: 2007
Herausgeber: GRIN Verlag

Buch in der Datenbank seit 25.12.2009 14:18:39
Buch zuletzt gefunden am 20.10.2016 08:24:24
ISBN/EAN: 9783638829458

ISBN - alternative Schreibweisen:
978-3-638-82945-8

< zum Suchergebnis...
< zum Archiv...
Benachbarte Bücher