. .
Deutsch
Deutschland
Ähnliche Bücher
Weitere, andere Bücher, die diesem Buch sehr ähnlich sein könnten:
Suchtools
Anmelden

Anmelden mit Facebook:

Registrieren
Passwort vergessen?


Such-Historie
Merkliste
Links zu eurobuch.de

Dieses Buch teilen auf…
Buchtipps
Aktuelles
Tipp von eurobuch.de
Werbung
Bezahlte Anzeige
FILTER
- 0 Ergebnisse
Kleinster Preis: 74,85 €, größter Preis: 81,83 €, Mittelwert: 76,25 €
Multi-Layer Potentials and Boundary Problems: for Higher-Order Elliptic Systems in Lipschitz Domains - Irina Mitrea, Marius Mitrea
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Irina Mitrea, Marius Mitrea:

Multi-Layer Potentials and Boundary Problems: for Higher-Order Elliptic Systems in Lipschitz Domains - neues Buch

ISBN: 9783642326653

ID: 978364232665

Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach.This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney-Lebesque spaces, Whitney-Besov spaces, Whitney-Sobolev- based Lebesgue spaces, Whitney-Triebel-Lizorkin spaces,Whitney-Sobolev-based Hardy spaces, Whitney-BMO and Whitney-VMO spaces. Irina Mitrea, Marius Mitrea, Books, Science and Nature, Multi-Layer Potentials and Boundary Problems: for Higher-Order Elliptic Systems in Lipschitz Domains Books>Science and Nature, Springer Berlin Heidelberg

Neues Buch Indigo.ca
new Free shipping on orders above $25 Versandkosten:zzgl. Versandkosten
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Multi-Layer Potentials and Boundary Problems - Irina Mitrea
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)

Irina Mitrea:

Multi-Layer Potentials and Boundary Problems - Taschenbuch

2013, ISBN: 9783642326653

[ED: Taschenbuch], [PU: Springer], Neuware - Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney-Lebesque spaces, Whitney-Besov spaces, Whitney-Sobolev- based Lebesgue spaces, Whitney-Triebel-Lizorkin spaces,Whitney-Sobolev-based Hardy spaces, Whitney-BMO and Whitney-VMO spaces., [SC: 0.00], Neuware, gewerbliches Angebot, 236x157x25 mm, [GW: 664g]

Neues Buch Booklooker.de
Carl Hübscher GmbH
Versandkosten:Versandkostenfrei, Versand nach Deutschland (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Multi-Layer Potentials and Boundary Problems - Irina Mitrea
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Irina Mitrea:
Multi-Layer Potentials and Boundary Problems - Taschenbuch

2013

ISBN: 9783642326653

[ED: Taschenbuch], [PU: Springer], Neuware - Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney Lebesque spaces, Whitney Besov spaces, Whitney Sobolev- based Lebesgue spaces, Whitney Triebel Lizorkin spaces,Whitney Sobolev-based Hardy spaces, Whitney BMO and Whitney VMO spaces., [SC: 0.00], Neuware, gewerbliches Angebot, 236x157x25 mm, [GW: 664g]

Neues Buch Booklooker.de
Sellonnet GmbH
Versandkosten:Versandkostenfrei, Versand nach Deutschland (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Multi-Layer Potentials and Boundary Problems - Irina Mitrea
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Irina Mitrea:
Multi-Layer Potentials and Boundary Problems - Taschenbuch

2013, ISBN: 9783642326653

[ED: Taschenbuch], [PU: Springer], Neuware - Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney-Lebesque spaces, Whitney-Besov spaces, Whitney-Sobolev- based Lebesgue spaces, Whitney-Triebel-Lizorkin spaces,Whitney-Sobolev-based Hardy spaces, Whitney-BMO and Whitney-VMO spaces., [SC: 0.00], Neuware, gewerbliches Angebot, FixedPrice, [GW: 664g]

Neues Buch Booklooker.de
Buchhandlung Kühn GmbH
Versandkosten:Versandkostenfrei, Versand nach Deutschland (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Multi-Layer Potentials and Boundary Problems - Irina Mitrea
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Irina Mitrea:
Multi-Layer Potentials and Boundary Problems - Taschenbuch

2013, ISBN: 9783642326653

[ED: Taschenbuch], [PU: Springer], Neuware - Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney Lebesque spaces, Whitney Besov spaces, Whitney Sobolev- based Lebesgue spaces, Whitney Triebel Lizorkin spaces,Whitney Sobolev-based Hardy spaces, Whitney BMO and Whitney VMO spaces., [SC: 0.00]

Neues Buch Booklooker.de
Rheinberg-Buch
Versandkosten:Versandkostenfrei (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.

< zum Suchergebnis...
Details zum Buch
Multi-Layer Potentials and Boundary Problems
Autor:

Irina Mitrea; Marius Mitrea

Titel:

Multi-Layer Potentials and Boundary Problems

ISBN-Nummer:

9783642326653

Detailangaben zum Buch - Multi-Layer Potentials and Boundary Problems


EAN (ISBN-13): 9783642326653
ISBN (ISBN-10): 364232665X
Gebundene Ausgabe
Taschenbuch
Erscheinungsjahr: 2013
Herausgeber: Springer Berlin Heidelberg

Buch in der Datenbank seit 17.03.2014 07:31:35
Buch zuletzt gefunden am 14.07.2016 16:29:11
ISBN/EAN: 9783642326653

ISBN - alternative Schreibweisen:
3-642-32665-X, 978-3-642-32665-3

< zum Suchergebnis...
< zum Archiv...
Benachbarte Bücher