. .
Deutsch
Deutschland
Ähnliche Bücher
Weitere, andere Bücher, die diesem Buch sehr ähnlich sein könnten:
Buch verkaufen
Anbieter, die das Buch mit der ISBN 9783642655692 ankaufen:
Suchtools
Anmelden

Anmelden mit Facebook:

Registrieren
Passwort vergessen?


Such-Historie
Merkliste
Links zu eurobuch.de

Dieses Buch teilen auf…
Buchtipps
Aktuelles
Tipp von eurobuch.de
Werbung
FILTER
- 0 Ergebnisse
Kleinster Preis: 82,61 €, größter Preis: 96,29 €, Mittelwert: 89,88 €
Indefinite Inner Product Spaces
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Indefinite Inner Product Spaces - neues Buch

ISBN: 9783642655692

ID: 16715912

By definition, an indefinite inner product space is a real or complex vector space together with a symmetric (in the complex case: hermi- tian) bilinear form prescribed on it so that the corresponding quadratic form assumes both positive and negative values. The most important special case arises when a Hilbert space is considered as an orthogonal direct sum of two subspaces, one equipped with. By definition, an indefinite inner product space is a real or complex vector space together with a symmetric (in the complex case: hermi- tian) bilinear form prescribed on it so that the corresponding quadratic form assumes both positive and negative values. The most important special case arises when a Hilbert space is considered as an orthogonal direct sum of two subspaces, one equipped with the original inner prod- uct, and the other with -1 times the original inner product. The subject first appeared thirty years ago in a paper of Dirac [1] on quantum field theory (d. also Pauli [lJ). Soon afterwards, Pontrja- gin [1] gave the first mathematical treatment of an indefinite inner prod- uct space. Pontrjagin was unaware of the investigations of Dirac and Pauli; on the other hand, he was inspired by a work of Sobolev [lJ, unpublished up to 1960, concerning a problem of mechanics. The attempts of Dirac and Pauli to apply the concept and elemen- tary properties of indefinite inner product spaces to field theory have been renewed by several authors. At present it is not easy to judge which of their results will contribute to the final form of this part of physics. The following list of references should serve as a guide to the extensive literature: Bleuler [1], Gupta [lJ, Kallen and Pauli [lJ, Heisen- berg [lJ-[4J, Bogoljubov, Medvedev and Polivanov [lJ, K.L.Nagy [lJ-[3], Berezin [lJ, Arons, Han and Sudarshan [1], Lee and Wick [1J. Books, Science and Geography~~Mathematics, Indefinite Inner Product Spaces~~Book~~9783642655692~~J. Bognar, , , , , , , , , ,, [PU: Springer, Berlin/Heidelberg/New York, NY]

Neues Buch Hive.co.uk
MPN: , SKU 16715912 Versandkosten:zzgl. Versandkosten
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Indefinite Inner Product Spaces (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge) - J. Bognar
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
J. Bognar:
Indefinite Inner Product Spaces (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge) - Taschenbuch

ISBN: 3642655696

[SR: 8925396], Paperback, [EAN: 9783642655692], Springer, Springer, Book, [PU: Springer], Springer, By definition, an indefinite inner product space is a real or complex vector space together with a symmetric (in the complex case: hermi­ tian) bilinear form prescribed on it so that the corresponding quadratic form assumes both positive and negative values. The most important special case arises when a Hilbert space is considered as an orthogonal direct sum of two subspaces, one equipped with the original inner prod­ uct, and the other with -1 times the original inner product. The subject first appeared thirty years ago in a paper of Dirac [1] on quantum field theory (d. also Pauli [lJ). Soon afterwards, Pontrja­ gin [1] gave the first mathematical treatment of an indefinite inner prod­ uct space. Pontrjagin was unaware of the investigations of Dirac and Pauli; on the other hand, he was inspired by a work of Sobolev [lJ, unpublished up to 1960, concerning a problem of mechanics. The attempts of Dirac and Pauli to apply the concept and elemen­ tary properties of indefinite inner product spaces to field theory have been renewed by several authors. At present it is not easy to judge which of their results will contribute to the final form of this part of physics. The following list of references should serve as a guide to the extensive literature: Bleuler [1], Gupta [lJ, Kallen and Pauli [lJ, Heisen­ berg [lJ-[4J, Bogoljubov, Medvedev and Polivanov [lJ, K.L.Nagy [lJ-[3], Berezin [lJ, Arons, Han and Sudarshan [1], Lee and Wick [1J., 13899, Linear, 13887, Algebra, 226698, Pure Mathematics, 13884, Mathematics, 75, Science & Math, 1000, Subjects, 283155, Books, 491542, Algebra & Trigonometry, 468218, Mathematics, 468216, Science & Mathematics, 465600, New, Used & Rental Textbooks, 2349030011, Specialty Boutique, 283155, Books

Neues Buch Amazon.com
oddesseyy
Neuware Versandkosten:zzgl. Versandkosten
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Indefinite Inner Product Spaces - Bognar, J.
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Bognar, J.:
Indefinite Inner Product Spaces - Taschenbuch

2011, ISBN: 9783642655692

[ED: Softcover], [PU: Springer, Berlin], By definition, an indefinite inner product space is a real or complex vector space together with a symmetric (in the complex case: hermi tian) bilinear form prescribed on it so that the corresponding quadratic form assumes both positive and negative values. The most important special case arises when a Hilbert space is considered as an orthogonal direct sum of two subspaces, one equipped with the original inner prod uct, and the other with -1 times the original inner product. The subject first appeared thirty years ago in a paper of Dirac [1] on quantum field theory (d. also Pauli [lJ). Soon afterwards, Pontrja gin [1] gave the first mathematical treatment of an indefinite inner prod uct space. Pontrjagin was unaware of the investigations of Dirac and Pauli on the other hand, he was inspired by a work of Sobolev [lJ, unpublished up to 1960, concerning a problem of mechanics. The attempts of Dirac and Pauli to apply the concept and elemen tary properties of indefinite inner product spaces to field theory have been renewed by several authors. At present it is not easy to judge which of their results will contribute to the final form of this part of physics. The following list of references should serve as a guide to the extensive literature: Bleuler [1], Gupta [lJ, Kallen and Pauli [lJ, Heisen berg [lJ-[4J, Bogoljubov, Medvedev and Polivanov [lJ, K.L.Nagy [lJ-[3], Berezin [lJ, Arons, Han and Sudarshan [1], Lee and Wick [1J. Softcover reprint of the original 1st ed. 1974. 2011. x, 226 S. IX, 224 pp. 229 mm Versandfertig in 3-5 Tagen, [SC: 0.00], Neuware, gewerbliches Angebot

Neues Buch Booklooker.de
buecher.de GmbH & Co. KG
Versandkosten:Versandkostenfrei, Versand nach Deutschland (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Indefinite Inner Product Spaces - J. Bognar
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
J. Bognar:
Indefinite Inner Product Spaces - Taschenbuch

ISBN: 9783642655692

Paperback, [PU: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG], Mathematics

Neues Buch Bookdepository.com
Versandkosten:Versandkostenfrei (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Indefinite Inner Product Spaces - J. Bognar
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
J. Bognar:
Indefinite Inner Product Spaces - Taschenbuch

2011, ISBN: 9783642655692

ID: 24447274

Softcover reprint of the original 1st ed. 1974, Softcover, Buch, [PU: Springer Berlin]

Neues Buch Lehmanns.de
Versandkosten:Versand in 7-9 Tagen, , Versandkostenfrei innerhalb der BRD (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.

Details zum Buch
Indefinite Inner Product Spaces (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge)
Autor:

János Bognár

Titel:

Indefinite Inner Product Spaces (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge)

ISBN-Nummer:

Detailangaben zum Buch - Indefinite Inner Product Spaces (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge)


EAN (ISBN-13): 9783642655692
ISBN (ISBN-10): 3642655696
Taschenbuch
Erscheinungsjahr: 2011
Herausgeber: Springer Nov 2011

Buch in der Datenbank seit 05.06.2013 16:21:07
Buch zuletzt gefunden am 06.07.2017 17:43:01
ISBN/EAN: 9783642655692

ISBN - alternative Schreibweisen:
3-642-65569-6, 978-3-642-65569-2


< zum Archiv...
Benachbarte Bücher