- 5 Ergebnisse
Kleinster Preis: € 52,15, größter Preis: € 148,16, Mittelwert: € 78,37
1
Integral Transforms in Geophysics - Pyankova, Tamara M.
Bestellen
bei amazon.de
€ 52,15
Versand: € 3,001
Bestellengesponserter Link
Pyankova, Tamara M.:

Integral Transforms in Geophysics - Taschenbuch

2013, ISBN: 9783642726309

Springer, Taschenbuch, Auflage: Softcover reprint of the original 1st ed. 1988, 392 Seiten, Publiziert: 2013-10-04T00:00:01Z, Produktgruppe: Buch, Hersteller-Nr.: biography, 1.38 kg, Geop… Mehr…

Versandkosten:Die angegebenen Versandkosten können von den tatsächlichen Kosten abweichen. (EUR 3.00)
2
Bestellen
bei alibris.co.uk
€ 60,72
Bestellengesponserter Link

Tamara M. Pyankova:

Integral Transforms in Geophysics - Erstausgabe

2012, ISBN: 9783642726309

Taschenbuch

Softcover, [ED: 1], PLEASE NOTE, WE DO NOT SHIP TO DENMARK. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Please note we cannot offer an expedited shipping ser… Mehr…

Versandkosten:zzgl. Versandkosten Fairford, GLOS, Paperbackshop International
3
Bestellen
bei Biblio.co.uk
$ 79,16
(ca. € 71,82)
Versand: € 12,101
Bestellengesponserter Link
Tamara M. Pyankova:
Integral Transforms in Geophysics - Taschenbuch

ISBN: 9783642726309

Paperback / softback. New. Title of the original Russian edition:"Analogi integrala tipa, Koshi v teorii geofizicheskikh, Polei",Nauka, 1984, 6

Versandkosten: EUR 12.10 The Saint Bookstore
4
Bestellen
bei alibris.co.uk
€ 59,01
Bestellengesponserter Link
Pyankova, Tamara M (Translated by), and Zhdanov, Michael S:
Integral Transforms in Geophysics - Taschenbuch

2011, ISBN: 9783642726309

Trade paperback, New., Trade paperback (US). Glued binding. 367 p., Berlin, Heidelberg, [PU: Springer]

Versandkosten:zzgl. Versandkosten Sparks, NV, Alibris
5
Bestellen
bei AbeBooks.de
€ 148,16
Versand: € 8,291
Bestellengesponserter Link
Michael S. Zhdanov Tamara M. Pyankova:
Integral Transforms in Geophysics - Taschenbuch

2011, ISBN: 3642726305

[EAN: 9783642726309], Neubuch, [PU: Springer], pp. 392, Books

NEW BOOK. Versandkosten: EUR 8.29 Books Puddle, New York, NY, U.S.A. [70780988] [Rating: 4 (von 5)]

1Da einige Plattformen keine Versandkonditionen übermitteln und diese vom Lieferland, dem Einkaufspreis, dem Gewicht und der Größe des Artikels, einer möglichen Mitgliedschaft der Plattform, einer direkten Lieferung durch die Plattform oder über einen Drittanbieter (Marketplace), etc. abhängig sein können, ist es möglich, dass die von eurobuch angegebenen Versandkosten nicht mit denen der anbietenden Plattform übereinstimmen.

Bibliographische Daten des bestpassenden Buches

Details zum Buch
Integral Transforms in Geophysics

Integral Transforms of Geophysical Fields serve as one of the major tools for processing and interpreting geophysical data. In this book the authors present a unified treatment of this theory, ranging from the techniques of the transfor- mation of 2-D and 3-D potential fields to the theory of se- paration and migration of electromagnetic and seismic fields. Of interest primarily to scientists and post-gradu- ate students engaged in gravimetrics, but also useful to geophysicists and researchers in mathematical physics.

Detailangaben zum Buch - Integral Transforms in Geophysics


EAN (ISBN-13): 9783642726309
ISBN (ISBN-10): 3642726305
Taschenbuch
Erscheinungsjahr: 2013
Herausgeber: Springer

Buch in der Datenbank seit 2014-10-10T08:39:07+02:00 (Berlin)
Detailseite zuletzt geändert am 2023-07-14T15:19:34+02:00 (Berlin)
ISBN/EAN: 9783642726309

ISBN - alternative Schreibweisen:
3-642-72630-5, 978-3-642-72630-9
Alternative Schreibweisen und verwandte Suchbegriffe:
Autor des Buches: zhdan, michael zhdanov, pyankova
Titel des Buches: integral transforms, geophysics, geo


Daten vom Verlag:

Autor/in: Michael S. Zhdanov
Titel: Integral Transforms in Geophysics
Verlag: Springer; Springer Berlin
367 Seiten
Erscheinungsjahr: 2011-12-10
Berlin; Heidelberg; DE
Gedruckt / Hergestellt in Niederlande.
Übersetzer/in: Tamara M. Pyankova
Gewicht: 0,673 kg
Sprache: Englisch
53,49 € (DE)
54,99 € (AT)
59,00 CHF (CH)
POD
XXIII, 367 p.

BC; Geotechnical Engineering & Applied Earth Sciences; Hardcover, Softcover / Geowissenschaften; Geowissenschaften; Verstehen; Fundament; Riemann surface; distribution; electromagnetic; electromagnetic field; electromagnetic fields; fields; geophysics; integral transform; magnetic field; magnetic fields; mathematical physics; migration; physics; wave; Geotechnical Engineering and Applied Earth Sciences; BB

I Cauchy-Type Integrals in the Theory of a Plane Geopotential Field.- 1 Cauchy-Type Integral.- 1.1 Definition.- 1.1.1 Cauchy Integral Formula.- 1.1.2 Concept of the Cauchy-Type Integral.- 1.1.3 Piecewise Analytical Functions.- 1.2 Main Properties.- 1.2.1 Hölder Condition.- 1.2.2 Calculation of Singular Integrals in Terms of the Cauchy Principal Value.- 1.2.3 Sokhotsky-Plemelj Formulas.- 1.2.4 Generalization of the Sokhotsky-Plemelj Formulas for Piecewise Smooth Curves.- 1.2.5 Cauchy-Tpye Integrals Along the Real Axis.- 1.3 Cauchy and Hubert Integral Transforms.- 1.3.1 Integral Boundary Conditions for Analytical Functions.- 1.3.2 Determination of a Piecewise Analytical Function from a Specified Discontinuity.- 1.3.3 Inversion Formulas for the Cauchy-Type Integral (Cauchy Integral Transforms).- 1.3.4 Hilbert Transforms.- 2 Representation of Plane Geopotential Fields in the Form of the Cauchy-Type Integral.- 2.1 Plane Potential Fields and Their Governing Equations.- 2.1.1 Vector Field Equations.- 2.1.2 Concept of a Plane Field.- 2.1.3 Plane Field Equations.- 2.1.4 Plane Field Flow Function.- 2.2 Logarithmic Potentials and the Cauchy-Type Integral.- 2.2.1 Logarithmic Potentials.- 2.2.2 Logarithmic Potentials in Complex Coordinates.- 2.2.3 Cauchy-Type Integral as a Sum of the Logarithmic Potentials of Simple and Double Layers.- 2.3 Complex Intensity and Potential of a Plane Field.- 2.3.1 Concept of Complex Intensity of a Plane Field.- 2.3.2 Complex Intensity Equations.- 2.3.3 Representation of Complex Intensity in Terms of Field Source Density.- 2.3.4 Complex Potential.- 2.4 Direct Solution of the Equation for Complex Field Intensity.- 2.4.1 Two-Dimensional Ostrogradsky-Gauss Formula in Complex Notation.- 2.4.2 Pompei Formulas.- 2.4.3 Solution to the Equation for Complex Intensity.- 2.5 Representation of the Gravitational Field in Terms of the Cauchy-Type Integral.- 2.5.1 Complex Intensity of the Gravitational Field.- 2.5.2 Representation of the Gravitational Field of a Homogeneous Domain in Terms of the Cauchy-Type Integral.- 2.5.3 Representation of the Gravitational Field of a Domain with an Analytical Mass Distribution in Terms of the Cauchy-Type Integral.- 2.5.4 Case of Vertical or Horizontal Variations in the Density.- 2.5.5 Case of Linear Density Variations Along the Coordinate Axis.- 2.5.6 General Case of Continuous Density Distribution.- 2.5.7 Calculation of the Gravitational Field of an Infinitely Extended Domain.- 2.6 Representation of a Fixed Magnetic Field in Terms of the Cauchy-Type Integral.- 2.6.1 Complex Potential of a Polarized Source.- 2.6.2 Complex Intensities and Potential of a Magnetic Field.- 2.6.3 Representation of the Magnetic Potential of a Homogeneous Domain in Terms of the Cauchy-Type Integrals.- 2.6.4 General Case of Magnetization Distribution.- 2.6.5 Analytical Distribution of Magnetization.- 3 Techniques for Separation of Plane Fields.- 3.1 Separation of Geopotential Fields into External and Internal Parts Using Spectral Decomposition.- 3.1.1 Statement of the Problem of Plane Field Separation.- 3.1.2 Spectral Representations of Plane Fields.- 3.1.3 Determination of the External and Internal Parts of the Scalar Potential and Field (Gauss-Schmiedt Formulas).- 3.2 Kertz-Siebert Technique.- 3.2.1 Problem of Separation of Field Complex Intensity.- 3.2.2 Field Separation at Ordinary Points of the Line L.- 3.2.3 Field Separation at Corners of the Line L.- 3.2.4 Kertz-Siebert Formulas.- 3.2.5 Equivalence Between the Kertz-Siebert and the Gauss-Schmiedt Formulas.- 4 Analytical Continuation of a Plane Field.- 4.1 Fundamentals of Analytical Continuation.- 4.1.1 Taylor Theorem.- 4.1.2 Uniqueness of an Analytical Function.- 4.1.3 Concept of Analytical Continuation.- 4.1.4 Concept of the Riemann Surface.- 4.1.5 Weierstrass Continuation of an Analytical Function.- 4.1.6 Singular Points of an Analytical Function.- 4.1.7 Penleve Continuation of an Analytical Function (Principle of Continuity).- 4.1.8 Conformai Mapping.- 4.2 Analytical Continuation of the Cauchy-Type Integral Through a Path of Integration.- 4.2.1 Analytical Continuation of a Real Analytical Function of a Real Variable.- 4.2.2 Concept of an Analytical Arc; the Herglotz-Tsirulsky Equation for the Arc.- 4.2.3 Analytical Continuation of a Function Specified Along an Analytical Curve.- 4.2.4 Continuation of the Cauchy-Type Integral Through a Path of Integration; Singular Points of the Continued Field.- 4.3 Analytical Continuation of a Plane Magnetic Field into a Domain Occupied by Magnetized Masses.- 4.3.1 Analytical Continuation of a Magnetic Potential into a Domain of Analytically Distributed Magnetization.- 4.3.2 Continuation Through a One-Side Herglotz-Tsirulsky Analytical Arc.- 4.3.3 Analyticity Condition for the Boundary of a Domain Occupied by Magnetized Masses.- 4.3.4 Singular Points of Analytical Continuation of the Magnetic Potential.- 4.3.5 Determination of Complex Magnetization of a Body from its Magnetic Potential.- 4.4 Analytical Continuation of a Plane Gravitational Field into a Domain Occupied by Attracting Masses.- 4.4.1 Characteristics of the Gravitational Field of a Homogeneous Domain Bounded by an Analytical Curve.- 4.4.2 Continuation of the Gravitational Field into a Domain with an Analytical Density Distribution.- 4.4.3 Case of a Homogeneous Domain Bounded by a Piecewise Analytical Curve.- 4.4.4 Singular Points of the Continued Field, Lying on the Boundary of a Material Body.- 4.5 Integral Techniques for Analytical Continuation of Plane Fields.- 4.5.1 Forms of Analytical Continuation of Plane Fields in Geophysics.- 4.5.2 Reconstruction of a Function Analytical in the Upper Half-Plane from Its Real or Imaginary Part.- 4.5.3 Analytical Continuation of Plane Fields into a Horizontal Layer Using Spectral Decomposition of the Cauchy Kernel.- 4.5.4 Case of Field Specification on the Real Axis. The Zamorev Formulas.- 4.5.5 Downward Analytical Continuation of Functions Having Singularities Both in the Lower and in the Upper Half-Planes.- 4.5.6 Analytical Continuation into Domains with Curvilinear Boundaries.- 4.5.7 Bateman Formula; Continuation of Complex Intensity of the Field into the Lower Half-Plane Using Its Real Part.- II Cauchy-Type Integral Analogs in the Theory of a Three-Dimensional Geopotential Field.- 5 Three-Dimensional Cauchy-Type Integral Analogs.- 5.1 Three-Dimensional Analog of the Cauchy Integral Formula.- 5.1.1 Vector Statements of the Ostrogradsky-Gauss Theorem.- 5.1.2 Vector Statements of the Stokes Theorem.- 5.1.3 Analog of the Cauchy-Type Integral.- 5.1.4 Relationship Between the Three-Dimensional Analog and the Classical Cauchy Integral Formula.- 5.1.5 Gauss Harmonic Function Theorem.- 5.1.6 Cauchy Formula Analog for an Infinite Domain.- 5.1.7 Three-Dimensional Analog of the Pompei Formulas.- 5.2 Definition and Properties of the Three-Dimensional Cauchy Integral Analog.- 5.2.1 Concept of a Three-Dimensional Cauchy Integral Analog.- 5.2.2 Evaluation of Singular Integrals in Terms of the Cauchy Principal Value.- 5.2.3 Three-Dimensional Analogs of the Sokhotsky-Plemelj Formulas.- 5.3 Integral Transforms of the Laplace Vector Fields.- 5.3.1 Integral Boundary Conditions for the Laplace Field.- 5.3.2 Piecewise Laplace Vector Fields. Determination of a Piecewise Laplace Field from a Specified Discontinuity.- 5.3.3 Inversion Formulas for the Three-Dimensional Cauchy Integral Analog.- 5.3.4 Three-Dimensional Hilbert Transforms.- 5.4 Cauchy Integral Analogs in Matrix Notation.- 5.4.1 Matrix Representation of the Differentiation Operators of Scalar and Vector Fields.- 5.4.2 Matrix Representations of Three-Dimensional Cauchy Integral Analogs.- 6 Application of Cauchy Integral Analogs to the Theory of a Three-Dimensional Geopotential Field.- 6.1 Newton Potential and the Three-Dimensional Cauchy Integral Analog.- 6.1.1 Newton Potential.- 6.1.2 Newton Potential of Simple Field Sources.- 6.1.3 Newton Potential of Polarized Field Sources.- 6.1.4 Three-Dimensional Cauchy-Type Integral as a Sum of a Simple and a Double Layer Field.- 6.2 Representation of the Gravitational Field in Terms of the Cauchy Integral Analog.- 6.2.1 Gravitational Field Equations.- 6.2.2 Representation of the Gravitational Field of a Three-Dimensional Homogeneous Body in Terms of the Cauchy-Type Integral.- 6.2.3 Gravitational Field of a Body with an Arbitrary Density Distribution.- 6.2.4 Case of Vertical or One-Dimensional Horizontal Variations in the Density.- 6.2.5 Some Special Cases of Density Distribution.- 6.2.6 Calculation of the Gravitational Field of a Three-Dimensional Infinitely Extended Homogeneous Domain.- 6.2.7 Field of an Infinitely Extended Domain Filled with Masses of a Z-Variable Density.- 6.3 Representation of a Fixed Magnetic Field in Terms of the Cauchy Integral Analog.- 6.3.1 Intensity and Potential of a Fixed Magnetic Field.- 6.3.2 Representation of a Magnetic Field with an Arbitrary Distribution of Magnetized Masses.- 6.3.3 Potential Distribution of Magnetization.- 6.3.4 Laplace Distribution of Magnetization.- 6.3.5 Magnetic Field of a Uniformly Magnetized Body.- 6.4 Generalized Kertz-Siebert Technique for Separation of Three-Dimensional Geopotential Fields.- 6.4.1 Statement of the Problem of Separation of a Three-Dimensional Field.- 6.4.2 Separation of Fields at Ordinary Points of the Surface.- 6.4.3 Separation of Fields at Singular Points of the Surface.- 6.4.4 Generalized Kertz-Siebert Formulas.- 7 Analytical Continuation of a Three-Dimensional Geopotential Field.- 7.1 Fundamentals of Analytical Continuation of the Laplace Field.- 7.1.1 Analytical Nature of Laplace Vector Fields.- 7.1.2 Uniqueness of Laplace Vector Fields and Harmonic Functions.- 7.1.3 Concept of Analytical Continuation of a Vector Field and Its Riemann Space.- 7.1.4 Continuation of the Laplace Field Using the Taylor Series.- 7.1.5 Stal Theorem (Principle of Continuity for the Laplace Field).- 7.2 Analytical Continuation of the Three-Dimensional Cauchy Integral Analog Through the Integration Surface.- 7.2.1 Concept of an Analytical Part of the Surface; Surface Equations in a Harmonic Form.- 7.2.2 Relationship Between the Surface Equation in a Harmonic Form and the Plane Curve Equation in the Herglotz-Tsirulsky Form.- 7.2.3 Continuation of the Cauchy-Type Integral Through the Integration Surface.- 7.3 Analytical Continuation of a Three-Dimensional Gravitational Field into a Homogeneous Material Body.- 7.3.1 Properties of the Gravitational Field of a Body Bounded by an Analytical Surface.- 7.3.2 Relationship Between the Shape of the Surface of a Three-Dimensional Homogeneous Material Body and the Location of Singularities of the Gravitational Field Continued Analytically into the Body.- 7.3.3 Definition of the Shape of the Surface of Three-Dimensional Material Bodies by Analytical Continuation of the Gravitational Field.- 7.4 Continuation of the Gravitational and Magnetic Fields into a Domain with an Arbitrary Analytical Distribution of Field Sources.- 7.4.1 Analytical Representations of Fields Continued into Masses.- 7.4.2 Case of a Domain Bounded by an Analytical Surface.- 7.4.3 Case of a Domain Bounded by a Piecewise Analytical Surface.- 7.5 Integral Techniques for Analytical Continuation of Three-Dimensional Laplace Fields.- 7.5.1 Analytical Continuation of the Laplace Field into the Upper Half-Space.- 7.5.2 Analytical Continuation of the Laplace Field into the Lower Half-Space.- III Stratton-Chu Type Integrals in the Theory of Electromagnetic Fields.- 8 Stratton-Chu Type Integrals.- 8.1 Electromagnetic Field Equations.- 8.1.1 Maxwell Equations.- 8.1.2 Field in Homogeneous Domains of a Medium.- 8.1.3 Boundary Conditions.- 8.1.4 Monochromatic Field Equations.- 8.1.5 Quasi-Stationary Electromagnetic Field.- 8.1.6 Field Wave Equations.- 8.1.7 Field Equations Allowing for Magnetic Currents and Charges.- 8.1.8 Stationary Electromagnetic Field.- 8.2 Integration of Equations for an Arbitrary Vector Field.- 8.2.1 Auxiliary Integral Identities.- 8.2.2 Vector Analogs of the Pompei Formulas.- 8.3 Stratton-Chu Integral Formulas.- 8.3.1 Stratton-Chu Formulas for a Transient Electromagnetic Field (General Case).- 8.3.2 Stratton-Chu Formulas for a Quasi-Stationary Field.- 8.3.3 Wave Model of the Field.- 8.3.4 Case of a Stationary Field.- 8.3.5 Stratton-Chu Formulas for a Monochromatic Field (General Case).- 8.3.6 Modified Stratton-Chu Formulas for a Monochromatic Field.- 8.3.7 Two-Dimensional Stratton-Chu Formulas.- 8.3.8 Stratton-Chu Formulas as a Cauchy Formula Analog.- 8.4 Stratton-Chu Type Integrals.- 8.4.1 Concept of the Stratton-Chu Type Integral for a Monochromatic Field.- 8.4.2 Properties of the Stratton-Chu Type Integrals.- 8.4.3 Modified Stratton-Chu Type Integrals.- 8.4.4 Matrix Representation.- 8.4.5 Stratton-Chu Type Integrals for a Quasi-Stationary Field.- 8.5 Extension of the Stratton-Chu Formulas to Inhomogeneous Media.- 8.5.1 Green Electromagnetic Tensors and Their Properties.- 8.5.2 Stratton-Chu Formulas for an Inhomogeneous Medium.- 8.5.3 Transition to the Model of a Homogeneous Medium.- 8.5.4 Stratton-Chu Type Integrals in an Inhomogeneous Medium and Their Properties.- 8.6 Integral Transforms of Electromagnetic Fields.- 8.6.1 Integral Boundary Conditions for the Electromagnetic Field on the Boundary of a Homogeneous Domain.- 8.6.2 Integral Boundary Conditions for the Electromagnetic Field on the Boundary of an Inhomogeneous Domain.- 8.6.3 Determination of the Electromagnetic Field from a Specified Discontinuity.- 8.6.4 Inversion Formulas for the Stratton-Chu Type Integrals.- 8.6.5 Stratton-Chu Integral Transforms on a Plane.- 8.7 Techniques for Separation of the Earth’s Electromagnetic Fields.- 8.7.1 Separation of the Electromagnetic Field into External and Internal Parts.- 8.7.2 Separation of the Electromagnetic Field into Normal and Anomalous Parts.- 9 Analytical Continuation of the Electromagnetic Field.- 9.1 General Principles.- 9.1.1 Analytical Nature of the Electromagnetic Field.- 9.1.2 Concept of Analytical Continuation of the Electromagnetic Field.- 9.1.3 Equations of Complete Analytical Functions.- 9.1.4 Principle of Continuity for the Electromagnetic Field.- 9.1.5 Electromagnetic Field in the Riemann Space.- 9.2 Analytical Continuation of the Electromagnetic Field into Geoelectrical Inhomogeneities.- 9.2.1 Analytical Continuation of the Stratton-Chu Type Integral Through the Integration Surface.- 9.2.2 Analytical Continuation of the Electromagnetic Field into a Homogeneous Domain Bounded by an Analytical and Piecewise Analytical Surfaces.- 9.3 Techniques for Analytical Continuation of the Electromagnetic Field.- 9.3.1 Forms of Analytical Continuation of the Electromagnetic Field in Geoelectrical Problems.- 9.3.2 Problem Statement.- 9.3.3 Continuation of the Field into a Layer.- 9.3.4 Continuation of a Two-Dimensional Electromagnetic Field.- 10 Migration of the Electromagnetic Field.- 10.1 Definition of the Concept of Migration.- 10.1.1 Definition of a Migration Field.- 10.1.2 System of Migration Transforms of Nonstationary Electromagnetic Fields.- 10.2 Properties of Migration Fields.- 10.2.1 Equation for a Migration Field in Direct Time.- 10.2.2 One-, Two-, and Three-Dimensional Migrations of Electromagnetic Source Fields.- 10.2.3 Extreme Values of Migration Fields.- 10.2.4 Migration of Theoretical and Model Electromagnetic Fields.- IV Kirchhoff-Type Integrals in the Elastic Wave Theory.- 11 Kirchhoff-Type Integrals.- 11.1 Elastic Waves in an Isotropic Medium.- 11.1.1 Stresses and Strains in Elastic Bodies.- 11.1.2 Equations of Motion of a Homogeneous Isotropic Elastic Medium.- 11.1.3 Longitudinal and Transverse Waves in a Homogeneous Isotropic Elastic Medium.- 11.2 Generalized Kirchhoff Integral Formula.- 11.2.1 Green Tensor and Vector Formulas.- 11.2.2 Kirchhoff Integral Formulas.- 11.2.3 Kirchhoff Integral Formulas for a Scalar Wave Field.- 11.2.4 Kirchhoff Integral Formulas in Matrix Notation.- 11.3 Kirchhoff-Type Integrals.- 11.3.1 Kirchhoff-Type Integrals for Wave Fields.- 11.3.2 Kirchhoff-Type Integrals for Elastic Displacement Fields.- 12 Continuation and Migration of Elastic Wave Fields.- 12.1 Analytical Continuation of Elastic Wave Fields.- 12.1.1 Continuation of the Elastic Displacement Field into the Upper and Lower Half-Spaces in a Homogeneous Isotropic Medium.- 12.1.2 Integral Formulas for Continuation of the Elastic Displacement Field into the Lower Half-Space for a Two-Layer Medium.- 12.1.3 Continuation of Elastic Displacement Fields Specified in a Horizontal Plane.- 12.1.4 Elaboration of Regularizing Algorithms for Wave Field Continuation.- 12.2 Migration of Wave Fields on the Basis of Analytical Continuation.- Appendix A Space Analogs of the Cauchy-Type Integrals and the Quaternion Theory.- A.1 Quaternions and Operations Thereon.- A.2 Monogenic Functions.- A.3 Quaternion Notation of Space Analogs of the Cauchy-Type Integral.- Appendix B Green Electromagnetic Functions for Inhomogeneous Media and Their Properties.- B.1 Field Equations.- B.2 Lorentz Lemma for an Inhomogeneous Medium.- B.3 Reciprocal Relations.- B.4 Integral Representations of the Electric and Magnetic Fields.- B.5 Some Formulas and Rules of Operations on Dyadic Tensor Functions.- B.6 Tensor Statements of the Ostrogradsky-Gauss Theorem.- References.
Title of the original Russian edition:"Analogi integrala tipa, Koshi v teorii geofizicheskikh, Polei",Nauka, 1984

Weitere, andere Bücher, die diesem Buch sehr ähnlich sein könnten:

Neuestes ähnliches Buch:
9783642726286 Integral Transforms in Geophysics (John W. Blunt)


< zum Archiv...